Selected genes are good when complementary to ones they share a body with

Genes are selected, not as ‘good’ in isolation, but as good at working against the background of the other genes in the gene pool. A good gene must be compatible with, and complementary to, the other genes with whom it has to share a long succession of bodies.

The gene pool is the long-term environment of the gene. ‘Good’ genes are blindly selected as those that survive in the gene pool.

What makes a gene good?

As a first approximation I said that what makes a gene good is the ability to build efficient survival machines—bodies. We must now amend that statement. The gene pool will become an evolutionarily stable set of genes, defined as a gene pool that cannot be invaded by any new gene.

Most new genes that arise, either by mutation or reassortment or immigration, are quickly penalized by natural selection: the evolutionarily stable set is restored.

Occasionally a new gene does succeed in invading the set: it succeeds in spreading through the gene pool. There is a transitional period of instability, terminating in a new evolutionarily stable set—a little bit of evolution has occurred.

By analogy with the aggression strategies, a population might have more than one alternative stable point, and it might occasionally flip from one to another. Progressive evolution may be not so much a steady upward climb as a series of discrete steps from stable plateau to stable plateau.

It may look as though the population as a whole is behaving like a single self-regulating unit. But this illusion is produced by selection going on at the level of the single gene. Genes are selected on ‘merit’. But merit is judged on the basis of performance against the background of the evolutionarily stable set which is the current gene pool.

An analogy with the members of a team can be drawn.